Skip to Main Content. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. Use of this web site signifies your agreement to the terms and conditions. Personal Sign In.

Author:Akimuro Nakree
Language:English (Spanish)
Published (Last):24 August 2019
PDF File Size:20.94 Mb
ePub File Size:6.50 Mb
Price:Free* [*Free Regsitration Required]

A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.

However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance.

Two of the digesters were replicates of the original design control digesters , while the other two digesters included internal mixing or effluent recycle experimental digesters.

The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies.

Many of these villages lack access to conventional premium fuel sources such as electricity or fossil fuels.

Consequently, many people are forced to use woody biomass as a source of heating energy and cooking fuel. Aside from adversely impacting local wooded ecosystems by deforestation, these practices pose serious human welfare issues since much of this biomass is burned indoors using poorly ventilated furnaces and cook stoves that generate high airborne particle matter PM concentrations.

One way to overcome limited fuel availability and improve indoor air quality in rural areas is by generating biogas from animal manure using anaerobic digestion AD for use as a cooking fuel. In an AD system, complex organic material is transformed and released as methane and carbon dioxide gas i. Cow and other livestock manures have traditionally served as the feedstock material in rural AD systems; however, other organic wastes, such as crop residues or kitchen wastes, can be codigested with livestock manure to improve biogas yields [ 1 , 2 ].

Biogas combustion does not produce PM emissions and for this reason is considered a clean-burning gas despite containing trace levels of toxic hydrogen sulfide H 2 S. They also found that PM emissions were reduced considerably when biogas was used in place of firewood [ 3 ].

Aside from improving air quality, the displacement of firewood with biogas has socioeconomic benefits because villagers mainly women and children spend less time collecting wood and more time pursuing other activities such as education and recreation.

In the past, the Indonesian government had supported the installation of community-scale digester systems in many remote villages in Indonesia. These digesters were based on the Chinese model and were constructed using concrete in a vertical fixed-dome configuration [ 4 ]. Unfortunately, the communities quickly abandoned many of these digesters due to improper construction, minimal institutional oversight, and poor training of the would-be operators. Indeed, these are just a few examples of the many barriers preventing the diffusion of biogas technology to rural communities.

India and China are leading the application of biogas systems for rural areas with more than 40 million digesters installed [ 2 ]; however, these programs required over 50 years of sustained governmental sponsorship [ 4 , 5 ].

Currently, the most popular type of small-scale digester is the Taiwanese model, which consists of a horizontal polyethylene tubular bag [ 6 , 7 ]. This system has shown promising results in a study in Costa Rica for a mixture of swine waste and cooking oil [ 2 ] and in the Andes of Peru for dairy manure [ 8 ].

This type of digester is relatively inexpensive and easy to install, but direct sun exposure may reduce the flexibility of the polyethylene bag, making it more susceptible to leakage over time [ 2 , 5 ]. While the tubular bag digester was less expensive and easier to install, it could incur considerably more maintenance cost through periodic replacement of the polyethylene bag [ 9 ].

Based on these historical lessons, the feasibility of a small-scale digester for use in individual households in Indonesia was explored as an intermediate step in developing a nationwide energy infrastructure based on AD.

Therefore, a second wave of implementation was carried out under specific design constraints, which mandated that the digesters were: i inexpensive; ii easy to maintain; iii durable; and iv efficient in converting organic wastes into biogas. The design conceived by Purnomo and Pertiwiningrum [ 10 ] met these criteria and was selected. These digesters Indonesian model were constructed from 0. Ultimately, 21 of these digesters were installed and tested in rural areas of Indonesia with cow manure serving as feedstock 1—3 cows per household.

However, a major drawback of this design was a tendency to clog with solids internally over time, which caused diminished methane yields and interrupted operation.

The repeated occurrence of clogging discouraged many villagers from its continued use. In fact, a follow-up survey of village participants revealed that 15 of the 21 digesters were abandoned within 3 years. In this study, our objective was to improve the Indonesian model digester design to reduce clogging while maintaining system performance. Some degree of solids accumulation is inevitable in plug-flow and other flow-through systems, including the Taiwanese model, due to limited mixing within these systems.

This can be especially problematic when cattle manure is used as the primary feedstock due to the high lignocellulosic biosolid content in this waste [ 11 ]. Indeed, these materials have a tendency to settle within the digester and are slow to degrade.

As a result, the effective volume is reduced, and therefore the hydraulic retention time of the digester system is shortened, which leads to lower substrate conversion.

Mechanical mixing can be used to resuspend settled solids and thereby mitigate solids accumulation and clogging; however, it also promotes hydraulic short circuiting within the plug-flow digester, which can reduce substrate conversion and consequently methane yield. In this study, we assessed the effectiveness of two manually operated, simple measures by introducing: 1 a mixing device and 2 effluent recycling as design modifications to reduce solids accumulation in the Indonesian model digester system.

Two digesters were scale replicates of the Indonesian model design and represented the controls , Figures 2 a and 2 b. One experimental digester was equipped with an internal mixer , consisting of a mixing rod that was operated manually by pulling a cord through the PVC elbows back and forth several times Figure 2 c.

This digester was mixed immediately before and after feeding. The other experimental digester was operated with effluent recycle for which the first catchment of effluent was returned to the influent port following feeding.

Otherwise, the reactor construction was the same as that for and. Daily biogas production was measured using a tube-displacement gas meter Figure 2 a. The tube-displacement gas meters were calibrated using a standard gas meter Actaris Meterfabriek, Delft, The Netherlands. The fresh manure was screened 0. Biogas production was measured daily, while pH and digester effluent solids concentrations were measured each feeding cycle.

Additional measurements, such as total volatile fatty acid TVFA concentration, and soluble chemical oxygen demand were performed on a weekly basis. Due to the asymmetric feeding schedule, the data is shown as weekly averages to compensate for interweekly variation in performance metrics.

One-way analysis of variance was used to determine whether parametric variables differed between digester systems, while the Tukey-Kramer HSD model for comparing multiple means was used to make pairwise comparisons. The steady-state period used for statistical analysis was restricted to the period following day 63, representing three HRTs after inoculation. On a few occasions, the biogas outlet line became blocked with sludge and we excluded performance data corresponding to these incidents from statistical comparisons.

We allowed for one complete HRT before assuming steady-state conditions following these events. Note that the plugging issues experienced in this study at the biogas outlet line were different in nature from the plugging issues experienced with the large-scale systems internally and were due to size scaling effects.

Each of the digesters exhibited minimal methane production for several weeks following inoculation with dilute dairy manure before feeding even started. To diagnose this problem, samples from each digester were taken and analyzed for individual VFA species.

As expected, high concentrations of VFAs were detected in all systems Figure 3. The observed VFA accumulation after inoculation was most likely caused by organic overloading of the system by the manure, whereby the rate of acetate formation exceeded the utilization rate by methanogens. The methanogens may have been inhibited or, because of their relatively slow growth rate, were present at too low concentration.

Eventually, methane production did initiate and the accumulated VFAs began to be consumed at which point, feeding and normal operation began i.

Within 63 days of the operating period after feeding had commenced , the VFAs were reduced to concentrations characteristic of stable conditions Figure 4 , suggesting that the biomass had acclimated and grown to concentrations sufficient enough to handle the organic loading rate that we employed [ 16 ].

The digesters maintained their stability for the remainder of the study. During the start-up period i. As anticipated, produced greater effluent solids concentrations and lower methane yields initially compared to the other systems due to the effect of mixing Figures 5 and 6. By mixing, diverged from ideal plug-flow PF behavior in which discreet packets of fluid move serially from the inlet to the outlet with minimal fluid exchange i.

Substrate conversion kinetics and performance are better in plug-flow systems compared to completely mixed systems because the biomass is subject to a higher initial substrate concentration and hydraulic short circuiting is minimized [ 17 ]. Despite these disadvantages, eventually achieved methane yields and effluent solids concentrations comparable to the other digester systems.

Finally, although effluent recycling would also encourage greater mixing, did not show any lag in performance at the beginning of the operating period.

The average specific methane yields were comparable between digesters systems Table 1 , with the average steady-state values ranging from 0. However, in these cases the organic loading rates were considerably lower 0. When comparing biogas yields, however, the digesters used in this study produced substantially more biogas 0. This degree of VS reduction is typical for AD systems treating cattle manure in laboratory settings at mesophilic temperatures [ 1 , 19 ] but is likely greater than experienced in the field, which may have lower average temperatures and suffer from diurnal and seasonal fluctuations.

In this study, we observed consistently low VFA concentrations and fairly high VS concentrations in the effluent during steady-state operation, which suggest that the system was limited by hydrolysis [ 20 ]. This is typical for anaerobic digestion of cattle manure, since a large fraction of the organic material is cellulosic in composition i.

Despite similar TS, VS, and FS removal efficiencies between digesters, there were marked differences in retained solids concentrations. We define retained solids here as the quantity of solids accumulated within the digester during the operating period, which persists despite fluctuations in mass inputs and outputs.

Indeed, and significantly reduced the amount of retained solids in the digesters compared to the controls. Yet, the difference between mixing and recycling conditions was not statistically significant. This implies that both mixing and effluent recycling are effective techniques and either can be used to reduce solids retention within the digester.

The mechanism driving the reduction in retained solids was clearly observed in both and. Indeed, the mixing rod in acted to dislodge and temporarily resuspend the solids that had settled between feeding cycles, which allowed more to escape in the effluent, while, in , the very process of pouring in the recycled effluent created additional turbulence, which allowed greater expulsion of solids by bulk transport.

Although there was never an instance of clogging in any of the digester systems during the study, we suspect that a reduction of retained solids would translate to fewer cases of clogging in the field. It is also possible that such mixing techniques would improve digester performance in cases where the solids retention time is excessive and HRT is shortened [ 21 , 22 ]. Insight from this study also suggests that the inclination of the reactor system i.

Greater inclinations would create higher shear velocities within the digester when the influent is introduced, thereby disrupting bed formation along the digester length; however, it would also promote thicker beds near the digester outlets where clogging occurs.

Finally, although specific instances of clogging are not mentioned in the literature for studies involving Taiwanese model digesters, potential problems associated with solid retention, especially for shortened HRTs, are frequently cited in [ 2 , 7 , 9 , 18 , 23 ].

In Lansing et al. In the Lansing et al. Mechanical mixing and effluent recycling were effective in reducing solids retention in the laboratory-scale digesters used in this study. We expect that similar reductions in solids retention could be achieved in the Taiwanese model digester when these mixing techniques are employed.

Nevertheless, long-term field trials involving the Indonesian, Taiwanese, and Chinese models should be conducted to validate their effectiveness when used in the field by native operators. Small-scale inexpensive anaerobic digester systems have become an essential technology for many rural households in developing countries, such as Indonesia, China, and India, providing a reliable source of cooking fuel.

The Taiwanese and Indonesian model digester systems are simple flow-through systems, which are intrinsically susceptible to solids accumulation and clogging, which cause reductions in methane yield and require extra maintenance.

The results from this study suggest that the use of digester mixing or effluent recycling is an effective way to mitigate solids accumulation in these systems without significantly jeopardizing their performance in terms of methane yield or solids removal efficiency making them more reliable and less of a burden to operate because of less maintenance. Our results show that the retained solids concentrations greatly exceed the influent solids concentration even for the experimental digesters.

This implies that internal solids accumulation is inevitable in these digester systems. Therefore, these digesters may still need to be cleaned periodically; albeit we predict that the digesters with digester mixing or effluent recycling will need to be cleaned less often than the control digesters.


Biogas Digester Plans

A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance.


Biogas Digester Design & Construction

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy. See our Privacy Policy and User Agreement for details. Published on May 27, Preventable diseases caused by unsafe sanitation practices, and respiratory issues created by burning solid fuels for cooking, heating and lighting kill millions of people in developing communities every year.


Biogasification of Horse Dung Using a Cylindrical Surface Batch Biodigester

One of the most critical elements of digester design, and the first thing to consider when planning to install a biogester, is your size requirements. The amount of waste that will be digested, and whether or not this will need to be diluted, will determine the size of the digester needed. The amount of waste loaded into the digester will vary according to the species of animal and the waste handling methods used. To speed up the digestion startup process, methane bacteria can be added to the digester before the first load of waste is loaded.

Related Articles